Bontrager Ion 200 RT teardown, what inside?
- Why daytime running lights?
- Bontrager Ion 200 RT holder 3D CAD model
- How to open the Bontrager Ion 200 RT
- Lens reflector collimator
- Circuit description
- ANT+
- Serial Wire Debug
- Synchronous step-down converter
- LED current and luminous flux
- Flash mode
- Battery life during sleep mode
- Battery life at flash mode
- Battery replacement
- Oscilloscope signals
- Bontrager Ion 200 re-engineering
-
Bontrager ION re-engineering
Components inside the Bontrager Ion 200 - Fora
The Bontrager Ion 200 RT /Flare RT light set is one of the best daytime running light for bicycles. It is not only very lightweight but also highly visible at long distance. The light set is of a particularly high quality. For my bicycle on solar energy, the Maxun One, I made daytime running lights myself and that is why I was curious how the Bontrager works. I cut the Bontrager Ion 200 apart to find out at what's inside.
Inside Bontrager ION 200 RT
Teardown Bontrager ION 200 RT
Why daytime running lights?
Cars are an increasing danger to cyclists. This is because the motorist is distracted by operating the abundant of electronics in the car, such as navigation, smartphone, etc. A car sometimes looks like an airplane cockpit, with the difference that in an airplane there is a co-pilot to operate everything.
Bontrager Ion 200 RT holder 3D CAD model
I designed a holder in Freecad, you can customize it to your liking. See here at GitHub.
Bontrager Ion 200 RT holder 3D CAD model
How to open the Bontrager Ion 200 RT
The Ion 200 RT has been sealed by the factory. You have to cut it open with a knife but that takes a lot of effort. Re-glue it with PU glue or a hot glue gun.
How to open the Bontrager Ion 200 RT
Lens reflector collimator
For bicycle lighting, you cannot properly use a bare LED without a lens because:
- The light surface of a LED is too small
- The beam angle is too large, usually 125 degrees, see Fig4.
That is why a lens, reflector and a collimator is used. The lens and reflector focus the light on a surface of 17 mm. The collimator consists of a bead surface of the lens and creates a parallel light beam, see Fig5.
Fig5 LED lens reflector collimator
LED lens bead surface
LED lens reflector collimator parabolic shape
LED lens reflector collimator inside view
Bontrager ION 200 RT Lumens
Read more about the reflector collimator here: LED Optics Explained.
Circuit description
Teardown Bontrager ION 200 RT PCB
Teardown Bontrager ION 200 RT circuit
ANT+
The Bontrager can be wireless controlled by a Garmin navigation device by ANT+. This is conceptually similar to 2.4 GHz Bluetooth low energy, but it is specialized for sensors.
https://en.wikipedia.org/wiki/ANT_(network)
Serial Wire Debug
Apparently, the device can be controlled by Serial Wire Debug via the USB connector. Note that the Bontrager connections of the USB are completely different from the standard.
Synchronous step-down converter
The converter operates at a frequency of 1.4 MHz, see Fig3. However, the LED current is not constant as expected, but it has a sawtooth shape with a much lower frequency, namely 1.6kHz, see Fig1. I wonder why this is made so.
LED current and luminous flux
The LED current can be calculated as follow:
UR1 = 50mV average, see Fig1.
I led = 50mV / 0,3Ohm = 170mA
With a Cree Xlamp XTEAWT-00-0000-000000HE4, the luminous flux may be about 170/350 * 150lm = 70lm.
Flash mode
In flash mode there are 3 pulses of 50ms and 2 pulses of 100ms, the period is 1,3s. See Fig2.
The total on time = 100+100+3x50 = 350ms
Battery life during sleep mode
The microcontroller and the two crystals are running during power off.
The sleep current is between 90 and 150uA, the average is about 120uA.
The battery life during power off = 420mAh / 120uA = 3500h = about 20 weeks
Battery life at flash mode
The average LED current = 0,35/1,3 * 167mA = 45mA
The theoretical battery life = 420mAh / 45mA = 9 hours
In practice it is approximately 5 hours.
Battery replacement
If the battery is worn out, you can replace it with a new one:
3,7V, 420mAH
Bontrager ION 200 RT battery replacement
Oscilloscope signals
Fig1 R1 shunt 200us
Fig2 R1 LED current U2 5 feedback
Fig3 U2 3 switch 200ns
C7
R6 from CPU
U2 1 enable
U2 3 switch 500ms
X2
X2
Bontrager Ion 200 re-engineering
Bontrager ION re-engineering
Components inside the Bontrager Ion 200
White LED
Probably Cree Xlamp XTEAWT-00-0000-000000HE4
Angle 125°
150lm at 350mA
Price $0,50
U1
SMD code S2RV (I cannot find this code)
Charge management controller
Probably: MCP73831
U2
Synchronous step-down converter
SMD code ZY881 (I cannot find this code)
Probably: TLV6256 or RT8096A or RT8008 or XM5062
U3
Wireless microcontroller
U4
SMD code 09GIS (I cannot find this code)
2,5V Voltage regulator
U5
Bluetooth ceramic chip antenna
M1
SMD code 6BAY (I cannot find this code)
Dual diode
X1
SMD code 88198 (I cannot find this code)
X2
Fora
https://www.pedelecforum.de/forum/index.php?threads/bontrager-ion-200-rt-teardown-what-inside.82176/
SMD code 32.0Y (I cannot find this code)